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Abstract 

The classification of cardiac-abnormality patterns with ECG data plays a crucial role in the diagnosis 

as well as treatment and prognosis of diseases related to the human heart. With the advent of deep 

learning techniques, particularly convolutional, recurrent, and generative neural networks , there has 

been a significant advancement in the accuracy and efficiency of cardiac-abnormality pattern 

classification with electrocardiogram (ECG) data. However, with the availability of multitudes of 

freely available multi-source ECG data today, more attempts are required to develop new models that 

can handle and perform well on these datasets simultaneously. In this study, an attempt is made to 

develop a novel deep learning classification model with multi-source ECG dataset for cardiac 

abnormality pattern classification. The model uses the power of Transformer networks in their ability 

to produce low inductive bias towards learning representations and the power of Recurrence 

networks to memorize a compressed representation of a sequence is that it is beneficial for 

generalization. The transformers are the fast-stream component due to their sensitivity to sensory 

input and the RNs are slow-stream component due to their long-term memory sustenance. The multi-

source ECG dataset is composed of 4 different and popular 12-lead ECG datasets available publicly 

for research purposes. The proposed model performed satisfactorily overall on a 27-class 

classification scenario. 

Keywords: Multi-source ECG data, Cardiac response abnormality pattern,  Fast-slow learning, deep 

learning 

 

1. Introduction 

Cardiac-abnormality pattern classification using ECG data is essential for early detection and 

diagnosis of various cardiac abnormalities. According to the World Health Organization, the 

classification of cardiac-abnormality pattern plays a crucial role in the diagnosis and treatment of 

cardiovascular diseases. The examination of variation in ECG waves can be used to detect several 

cardiovascular abnormalities. An electrocardiogram (ECG) is a visual depiction of the electrical 

signals produced by the heart [1]. It is employed to detect and diagnose a range of cardiac conditions 

and irregularities., A wide variety of heart conditions can be identified by studying the changes in 

these waves. The extraction of waveforms from the ECG cycle has been the subject of several 

techniques [1]. Filtering the data, making unique, engaging blocks for each peak, and establishing a 

constant threshold point are all parts of these techniques. The classification of cardiac abnormality 

patterns using ECG data is another important goal for determining the heart's health. Traditional 

methods were limited in their ability to capture complex patterns present in multi-source ECG 

signals as they relied on handcrafted features and rule-based strategies [2]. Deep learning techniques 

have emerged as powerful tools for automated feature extraction and classification, enabling more 

accurate and robust analysis. With the establishment of recurrent neural networks (RNNs), generative 

adversarial networks (GANs), and convolutional neural networks (CNNs), there has been a significant 

advancement in the accuracy and efficiency of cardiac-abnormality pattern classification using ECG 

data [3, 4]. Especially, the surge in studies involving use of novel strategies such as transformer and 

attention mechanisms is notable. 

Several reviews and studies have been reported utilizing RNNs and Transformers in ECG signal 

analysis. However, here the review is exhaustive and limited to the issue at hand. The paper in [3] 

provides critically and exhaustively reviews studies that used deep learning methodologies, 

especially recurrent and convolutional nets (RNNs and CNNs) for the purpose of detecting 

arrhythmia in Electrocardiogram (ECG) signals. Amongst other models, the paper also reviews the 

exploration and utilization of more than 15 RNN structures, usually long short-term memory 

(LSTM) and gated recurrent unit (GRU) based, and with or without CNNs, for the purpose of 

sequence modelling and classification tasks. The review offers valuable insights into the capabilities 
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of these RNN-based methods via performance metrics such as overall accuracy, inter-patient 

accuracies, and intra-patient accuracies, and identifies intriguing avenues for future research in this 

field. However, model-wise limitations are not included in the review. The challenges with RNNs and 

in general with other DNN models as well are generically out forward as generalizability, 

visualization-ability, interpretability, and reliability. The issue of inductive bias with use of RNNs in 

ECG signal analysis is not discussed in the review and remains open for discussion. 

In attempt to diving deeper into more novel studies (in context to DL in ECG signal analysis), study 

reported in [5] introduces an innovative deep learning framework for classifying ECG arrhythmias. 

Their framework combines a 2-D CNN with an attention mechanism module and a LSTM in 

bidirectional fashion, to build a hybrid model. The attention strategy employed within the 2D-CNN 

segment enables the overall model to selectively concentrate on individual 

portions of the input ECG signals separately, while the bidirectional LSTM component successfully 

captures temporal relationships. Their suggested model demonstrates a high level of performance in 

accurately classifying arrhythmias on widely recognized datasets. However, the utility of such a 

hybrid model in classification of multiple labels present within a single recording is not yet explored. 

Also, such a model is yet to be evaluated on multi-source ECG signal- based datasets. The study in 

[6] introduces a new deep neural network called ECGDETR, which is based on a transformer model. 

ECGDETR is designed to identify arrhythmia in continuous ECG segments from a single lead. Their 

suggested technique achieves comparable performance in heartbeat placement and classification 

when compared to prior efforts where classification is done by leveraging factors such as inter-

heartbeat interdependence. Furthermore, their model utilizes a more concise inference approach since 

it does not need explicit segmentation of heartbeats. The model has been tested on three distinct 

arrhythmia detection tasks to demonstrate its capacity to perform well across varied scenarios. It is 

notable here that transformer-DNN based models do not require pre-processing of ECG signals to 

segment heartbeats separately. In another study, a robust and effective unsupervised transformer 

anomaly detection model in time series data is presented in [7]. The proposed model was employed 

to identify abnormalities in human cardiac time series data, including premature ventricular 

contractions (PVC), supraventricular premature (SP), and other electrocardiogram (ECG) anomalies. 

The model design consists of a transformer encoder network, a series of linear dense layers, and a 

decoder network. The strategy for detecting anomalies in ECG time series is based on a two-stage 

sequence prediction method. Their findings from two popular datasets i.e. the MIT-BIH and the 

ECG5000 Arrhythmia datasets, indicated towards the effectiveness of transformer encoder replacing 

over the existing methods (conventional encoders) for the purpose of ECG signal analysis and 

classification. The transformer encoder was evaluated against many cutting-edge deep learning 

models in further studies. They were successful in establishing that their model surpassed the other 

models in terms of various performance metrics. In summary, combining conventional DNN 

architectures such as CNNs/RNNs with more novel strategies such as transformer and attention 

mechanisms is noteworthy and more such studies must be encouraged. 

Parallel to the development of DL models for ECG signal analysis, recently, multitudes of ECG data 

are made available for algorithm development and analysis. The datasets are available with varied 

lead-counts and signal lengths. Also, each recorded ECG is multi-label. These variations in ECG 

data characteristics makes it difficult for deep learning models to provide high performance over 

each of these datasets and classes. In light of these issues, handling multi- source ECG data is a 

challenge and developing more sophisticated deep learning models that can perform well on such 

datasets is always beneficial. Especially models that can extract both, short- as well as long-term 

variability-based cardiac abnormalities present in ECG signals. 

Therefore, in this study, a fast-slow stream architecture based DNN model is proposed. This model, 

composed of Transformers and RNNs , is utilized to perform cardiac-abnormality pattern 

classification given multi-source ECG data. The reason for a hybrid architecture is as follows. It is 

computationally very expensive to supply the entire raw ECG signal directly to a simple RNN and if 

we compress the signal, then during the learning of these temporally compressed ECG signal 

representations, the same RNN poses severe inductive bias. There is an upside to learing from a 

compressed representation of a sequence as it is beneficial for generalization. Attaining 

generalization is one of the most desirable attribute of RNNs and in fact for every machine learning 
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model. In contrast, there are few DNN architectures that incur low inductive bias towards learning 

temporally compressed representations. One such architecture is a transformer network. Howevert 

these Transformers also have the fimiliar downside of incurring heavy computation costs on the 

process. Therefore, the idea of utilizing a hybrid (Transformers-RNN) architecture is intuitive and 

straightforward. The fast stream component of the architecture i.e. Transformers, are sensitive to 

sensory input and can capture localized or short-term details. In contrast, the slow-stream component 

of the architecture i.e. recurrent units, can memorize representation in long-term. Such strategies 

have been used earlier however it will help develop efficient model in multi-source ECG data based 

cardiac-abnormality pattern classification. Therefore, in this study, the proposed hybrid architecture 

is utilized in multisource ECG data. 

The rest of the paper is divided into sections. Section 2 and its sub-sections incorporates the 

materials and methods utilized in the study. Section 3 provides results obtained and its discussion. 

Section 4 concludes the study. 

 

2. Materials and Methods 

2.1 Dataset: Description and Preparation: The 12-Lead multi-source ECG Database, 

Statistics, and Preprocessing 

Overall, the 12-Lead multi-source ECG Database considered here for study is composed of 4 

different databases. Individual database summaries are provided in Table 1. A total of 27 cardiac 

abnormalities are captured in the multi- source ECG data. Single or multiple cardiac abnormalities 

could be present in a single recording. These cardiac abnormalities along with abbreviations are 

listed in Table 2 and corresponding sample proportions in the consolidated database is shown in 

Figure 1. From Figure 1, it is clear that ‘Sinus Rhythm’ or ‘SNR’ has the largest number of samples 

whereas the ‘Premature Ventricular Contractions’ or ‘PVC’ has the lowest number of samples. 

Table 1 Multi-source 12-lead ECG database summary 
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Figure 1 Bar chart showing the class-wise distribution of data samples. 
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Table 2 Summary of ECG data diagnosis sample proportions in individual database . 

 
2.2 Data Preparation 

The inherent noise in the recordings and the imbalance in cardiac-abnormality sample proportion are 

the issues that need attention and are addressed in this section. 

Signal Denoising and Filtering 

Observed ECG signals are subject to corruption by many types of noise, including baseline wander 

(BW), power-line interference (PLI), motion artefacts, and physiological artefacts. Of these, BW and 

PLI are the most significant factors that degrade the signal quality and render the visual and 

automated diagnostic inaccurate. Also, the frequency response of the ECG signals varies with time. 

Hence, it is necessary to eliminate artefacts and noise from these electrocardiogram (ECG) data in 

order to guarantee proper and reliable ECG signal analysis. During the preprocessing of 

electrocardiogram (ECG) data, several transformations are utilized in order to eliminate artefacts and 

noise. [8]. 

In this study, a denoised version is obtained after removal of noise incurred due to electrode contact 

noise, power line interference, muscle contraction, motion artefacts, baseline wandering, and random 

noise[9]. A sequential noise- reduction approach is followed to reduce noise from the raw ECG 

signals. Figure 2(a) shows a random sample ECG 
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signal that is affected by these noises and artefacts. Frequency components above 50 Hz are removed 

using a Butterworth low pass filter. A LOESS smoother is then employed to supress the effects 

caused by the wandering baseline phenomena. Finally, non-local mean algorithm is used to handle 

other noises. Figure 2(b) shows the resulting ECG signal after the above-mentioned preprocessing 

steps are applied. 

 
(a) (b) 

Figure 2 (a) Raw signal, and (b) Filtered and denoised signal. 

Imbalanced data 

Another major issue with multi-source database is the imbalance in sample proportions which can 

adversely affect the performance of any machine learning oriented algorithm [10]. Here, this issue is 

handled via employing an empirical sample-weight allocation strategy. To compensate for the 

imbalanced data, we calculate a weight for each of the 27 diagnosis. The weight-value for each 

diagnosis is listed in Table 3. The weight decides how much any machine learning algorithm will learn 

from the different data labels (diagnosis). This filtered and balanced data is used for algorithm 

development is this study. 

Table 3 ECG diagnosis label weight values. 

Class Weight 

value 

Class Weight 

value 

0 72.08 14 74.83 

1 14.24 15 1.03 

2 6.20 16 8.97 

3 68.63 17 114.63 

4 20.70 18 17.38 

5 21.27 19 11.93 

6 4.61 20 50.47 

7 63.38 21 8.97 

8 59.04 22 19.38 

9 38.76 23 100.23 

10 9.00 24 21.62 

11 12.46 25 13.38 

12 3.54 26 31.55 

13 9.14   

2.3 Fast-Slow Stream DNN for ECG Signal classification 

Transformers are known for their ability to capture global dependencies in data, making them 

suitable for tasks where long-range dependencies are important such as the case in hand in this study. 

ECG signals reflect long-range dependencies. Transformers excel in tasks such as ECG signal 

analysis, where interpreting context over long sequences is critical for performance. Recurrent neural 

networks (RNNs), particularly LSTMs and GRUs, are suitable for capturing temporal dependencies in 

ECG data. Furthermore, during the learning of temporally compressed representations, a simple 

RNN poses a severe inductive bias. The upside of a compressed representation of a sequence is that 

it is beneficial for generalization. This is because the compressed representations have fewer 

irrelevant details and hence can be relatively easily re-used and re-purposed. In contrast, low inductive 

bias towards learning temporally compressed representations is shown by Transformers [11, 12]. 

Transformer has achieved SOTA results in physiological signal analysis with its pairwise attention 

mechanism with downside of having heavy computation costs. In fact, the computation attention 

mechanism in sections of signals is quadratic in nature. The Fast-Slow Stream Architecture DNNs 

proposed by [13] provides a model that utilizes these above tow strategies in a balancing manner 

such that optimal results are obtained. 

The present study inspires from the fact that one can leverage both architectures for enhanced learning 
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dynamics in ECG signal analysis and come up with a hybrid architecture. Incorporating transformers 

into the initial layers of a DNN model enables the model to rapidly grasp high-level features and 

relationships within the input ECG signal features. Incorporating RNNs deeper into a DNN 

architecture allows the model to refine its understanding of temporal dynamics in the data. 

Inspired from this fast stream and slow stream computation, in this study, a novel model is developed 

and used for ECG analysis. The fast stream component i.e. the ‘Transformers’ has two properties; 

high capacity to react quickly to the ECG input variations and, a short-term memory whereas the slow 

stream i.e. the ‘RNN’ component, updates at a slower rate due to its long-term memory capacity and 

therefore able to summarize the most relevant information from a lengthy ECG observation sequence. 

Figure 3 shows the architecture of the fast-slow stream learning based deep neural network model. In 

the context of realization, first, we break the input electrocardiogram signal up into chunks of a 

definite size. This step provides the notion of creating small memory segments from the lengthier 

signal. While the slow stream consolidates and aggregates information across multiple ECG chunks, 

the fast stream component or the transformers operates within each ECG signal chunk. The slow 

stream updates itself per chunk on average. For example, a random ECG signal is broken down into 10 

chunks that are termed as ‘t_i’ where i varies from 1 to 10. Each chunk is fed into a separate 

transformer cell that contains a self-attention and a cross-attention module. Each transformer cell 

feeds into an RNN cell supplying it a transformative representation of the corresponding ECG chunk. 

The different RNN cells from each chunk are interconnected to each other as a timeline. This 

timeline is a course-grained or compressed representation of the original ECG observation. However, 

it appropriately reflects the variations in the ECG response of a patient over a longer period of time. 

The LSTM-RNN layer of the model shown in Figure 3 exploits this temporally compressed yet 

relevant information and helps in cardiac abnormality pattern classification. In short, the slow stream 

contains coarse-grained information that is present in the ECG signal, whereas the fast stream 

contains fine-grained local information of the input electrocardiogram. This information asymmetry 

improves generalization and adaptation performance of the model [14]. The fast and slow streams 

interact with each other though bottleneck of attention [13]. This hybrid architecture prevents the 

model from capturing extraneous ECG signal that lacks relevance for subsequent tasks. 

Figure 3 Figure showing the hybrid architecture of proposed Fast-Slow learning model. 
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3 Experiment Setup, Results, and Discussion 

3.1 Setup 

A cardiac abnormality pattern classification model is built based on the Fast-Slow Stream DNN 

discussed in section 2.3 for utilization with multi-source ECG data. The overall model architecture is 

shown in Figure 3. The model is composed of a data-transformation layer, a transformer layer, a 

recurrent layer, and a classification layer. The data- transformation layer breaks the entire input ECG 

signal into equal sized segments to be used as input to the transformer layer. The transformer layer is 

composed of several self-attention--cross-attention modules that are sensitive to subtle variations in 

truncated ECG signal. Each module has 1 cross-attention and 2 self-attention blocks with ReLU 

activations. The block interactively forms a compressed representation of the ECG timeline. Then 

the recurrent layer accepts input from each of these 10 modules and extracts information from the 

temporally compressed signal. ReLU activations and sigmoid activations are used in the recurrent 

layer. The extracted data is flattened via dense layer (with 100 nodes and ReLU activation) and then 

the dimensionality is reduced to 50 nodes (with ReLU activation). This 50- diemnsional feature is 

fed into a 27-node classification layer with sigmoid activation at each node for multi-label 

classification. The sigmoid activation in the classification layer allows multiple classes to be true 

simultaneously. This helps the current study. The model architecture summary and hyperparameter 

settings are listed in Table 4. Amongst all the DNN model hyperparameters, this model settles on 

specific values of few hyperparameters based on empirical testing or hyperparameter tuning and 

others based on literature references. For example, the chunk size is finalized via grid-search 

hyperparameter tuning strategy applied on 3 different values. This model is trained on the ECG 

dataset discussed in section 2.1. The model is trained on 80% of the samples from the entire dataset 

and 10% of the it is used for model validation. It is notable here that the training and validation splits 

are composed from different classes based on their proportions in the entire dataset. Lastly , a 10% of 

the entire dataset is used for model testing. Model performances are reported on this set. 

Table 4 The proposed model architecture and hyperparameter settings. 

ECG signal classification model with Fast-Slow stream DNN 

Number of layers 4 

Attention mechanism Multiple head attention 

Feedforward network dropout 

size 

0.2 

Attention network dropout size 0.1 

Chunk size 500 

‘r’ (One Cross Attention per *r* 

Self Attention) 

2 

Number of classes 27 

Epochs 30 

Learning rate 1e-4 

Weight decay rate 1e-4 

Number of heads 1 

Cross-validation folds 3 

Activation functions Gaussian error linear unit for 

FFN 

loss Categorical Cross-Entropy 

Optimizer Adam 

Performance metric Accuracy 

3.2 Model performance: Results, and Discussion 

The proposed model performed satisfactorily on the ECG data. A confusion matrix normalized over 

the number of total recordings is reported. Since multiple labels can be assigned to one recording, the 

proposed model is capable of producing multiple outputs for. To obtain the scoring metric, 

contribution from each recording are normalized. This is achieved by dividing by the number of 

output classes with positive value. For each recording k = 1 to n, let yk be the set of positive 

classifier outputs and xk be the set of positive labels. The new confusion matrix is calculated as 
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Where, 

 
Here, for any recording k , the number of distinct classes with a positive label and/or classier output 

is represented by the quantity . 

Figure 4 presents the performance score matrix for the proposed model. From figure 4, it is evident 

that the 

proposed model performs satisfactorily given 27-class classification problem with multi-source ECG 

data. The proposed model is able to classify the ‘Brady’ with highest score of 0.59 and is able to 

classify ;SICV’ with lowest score of 0.12. It is also evident from the matrix is that the ‘SNR’ class is 

mixing with all other classes. This is may be due to the large proportion of SNR samples (say 54% in 

case of CPS) in the whole dataset and even after weight allocation, the number of samples are still 

able to bias the model’s performance. 

This issue could be a scope for further investigation. It seems as if the model is giving a lot of false 

negatives as well 

i.e. a cardiac abnormality pattern is present in the signal but the model is identifying the signal as 

normal. For example, the ‘SA’ cardiac abnormality pattern is identified as SNR with a significantly 

high score of 0.37 whereas the score for it being correctly identified is only 0.20. In summary, the 

model is able to perform satisfactory classification over 27 classes however there is scope for 

improvements. 

To compare the performance of the proposed model, a one-dimensional fully connected network or 

FCN, one- dimensional Resnet-1D (Residual network) that has been used for RCG signal 

classification in [3, 15] are considered here. Also, and a LSTM-RNN model is also considered 

however its results ate only listed in table since detailed comparison with two referenced models is 

sufficient. Figure 5(a), and 5(b) present the performance score matrices for the FCN and the Resnet-

1D model respectively. Table 5 tabulates the performance of the models. It is evident that average 

score over the digonal elements is best for the Resnet-1D model at 0.32. However, the proposed 

model also provides a score of 0.31 that is significantly comparable to Resnet-1D. Moreover, the 

lowest score for Resnet-1D is 0.0 for ‘RAD’ which means the Resnet-1D wasn’t able to classify a 

single recording of ‘RAD’ class correctly. Same goes for the FCN model as it is unable to classify a 

single recording of ‘RAD’ correctly. In contrast, the proposed model provides a score of 0.12 for 

‘RAD’. 

These inferences indicate to the bias nature of Resnet-1D and FCN model towards classes with high 

sample proportions. The proposed model is better in terms of generalization and hence superior for 

multi-source ECG data of variable class sample proportions. However, the proposed model also 

reflects a higher ‘true-negative’ score over each class. This is interpretable from the high scores of 

SNR i.e. sinus normal rhythm in each of the diseases. This could be due to the presence of numerous 

SNR segments along with abnormality patterns in each ECG observation. This leads to leaking of 

SNR and different abnormality patterns into each other during transformations through the DNN 

model layers. This process confuses the proposed model as it considers and exploits long-term time 

dependency. Therefore, the model suffers from this issue. A deeper dive into the weights of long- and 

short-term memory components is needful in future studies. 
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Figure 4 Proposed model performance score matrix. 

 

Figure 5 Performance score matrix for (a) fully connected dense model, and (b) Resnet-1D model. 

Table 5 Summary of model performances over the multi-source ECG data 

Model Scores (over only the diagonal elements) 

Best score Worst score Average score 

Proposed 0.56 0.12 0.31 

Fully connected 0.64 0.0 0.30 

Resnet-1D 0.81 0.0 0.32 

LSTM-RNN 0.70 0.05 0.28 

 

4 Conclusion 

In this study, a cardiac-abnormality pattern classification approach is developed successfully for use 

in multi- source ECG data. The 27-class multi-source ECG dataset is prepared using 4 popular 

datasets i.e. the CPS dataset, the INCART dataset, the PTB and PTB-XL, and the Georgia dataset that 

are available publicly. Each dataset has multi- label 12-lead dataset. The inherent issues of class 

sample imbalance and noisy samples is addressed as well. Overall, 27 cardiac abnormality conditions 

are identified as target class labels or patterns. The use of a fast-slow stream DNN architecture is 

considered to build a 27 cardiac-abnormality patterns classifier. The fast-stream component of the 

architecture helped capturing subtle details of the ECG signal on a localized level i.e. at chunk level. 
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Whereas, the slow- stream component was able to memorize long-term compressed representations in 

the multi-source ECG signals. The model performed satisfactorily overall with highest classification 

score of 0.59 and lowest score of 0.12. In future, the impact of inter-leakage of SNR class ECG 

patterns to abnormality patterns needs investigation. Further to this, a deeper dive into the weights of 

long- and short-term memory components is also needful in future studies to counter this impact. Also, 

readers may attempt to change the class weight strategy used here in handling class-sample 

imbalance with imputer strategy to investigate the effect. 
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